
Plugin Guide
for SaberNet DCS 2.0

Title: SaberNet DCS Plugin Guide
Author: Seth Remington <sremington@saberlogic.com>
Date: 2009-04-21
Revision: 1.2.2.2
Description: Documentation for installing and creating plugins for

SaberNet DCS

Contents

Events, Subscribers, and Publishers
SaberNet DCS uses events to communicate between the server, clients, and plugins. It
does so by means of the Pyro Event Server (for more detailed information please see
the Pyro documentation. TODO: provide link) A Publisher is the process that generates
the events and the Subscriber is the process that consumes the events. The Publishers
do not know or care who is consuming the information and the Subscribers do not
know or care who generated the information.

Each event contains pieces of data related to that particular event. For example:
the clock in event contains the employee’s serial number, ID, name, the timestamp of
when they clocked in, and the name of the terminal they clocked in on. The data is sent
in the form of a Python dictionary.

Channels and Namespaces

Event Types
The following list is the currently available event types and the data that is sent. Re-
member that all event channel names are preceeded with the namespace (i.e. if the
namespace is "sndcs" the clock in event would be sndcs_clock_in).

Event
Name

Data Key Data Value

clock_in

serialNum Employee’s serialNum
empId Employee’s employee ID

... continued on next page

1



Event
Name

Data Key Data Value

properName Employee’s proper name (i.e. lastName, firstName)
startStamp Clock in date/time
startTerminal The name of the terminal the employee clocked in on

clock_out

serialNum Employee’s serialNum
empId Employee’s employee ID
properName Employee’s proper name (i.e. lastName, firstName)
endStamp Clock out date/time
endTerminal The name of the terminal the employee clocked out on

break_in

serialNum Employee’s serialNum
empId Employee’s employee ID
properName Employee’s proper name (i.e. lastName, firstName)
startStamp Break in date/time
startTerminal The name of the terminal the employee used

activity

A dictionary of data about the activity being started
serialNum Will always be the serialNum of the BREAK in-

direct activity
indirect Will always be the code of the BREAK indirect

activty
description| Will al-
ways be the descrip-
tion of the BREAK
indirect activty

break_out

serialNum Employee’s serialNum
empId Employee’s employee ID
properName Employee’s proper name (i.e. lastName, firstName)
startStamp Break out date/time
startTerminal The name of the terminal the employee used

activity

A dictionary of data about the activity being started
serialNum Will always be the serialNum of the BREAK in-

direct activity
indirect Will always be the code of the BREAK indirect

activty
description Will always be the description of the BREAK in-

direct activty

lunch_in

serialNum Employee’s serialNum
empId Employee’s employee ID
properName Employee’s proper name (i.e. lastName, firstName)
startStamp Lunch in date/time
startTerminal The name of the terminal the employee used

activity

A dictionary of data about the activity being started
... continued on next page

2



Event
Name

Data Key Data Value

serialNum Will always be the serialNum of the LUNCH in-
direct activity

indirect Will always be the code of the LUNCH indirect
activty

description Will always be the description of the LUNCH in-
direct activty

lunch_out

serialNum Employee’s serialNum
empId Employee’s employee ID
properName Employee’s proper name (i.e. lastName, firstName)
startStamp Lunch out date/time
startTerminal The name of the terminal the employee used

activity

A dictionary of data about the activity being started
serialNum Will always be the serialNum of the LUNCH in-

direct activity
indirect Will always be the code of the LUNCH indirect

activty
description Will always be the description of the LUNCH in-

direct activty

indirect_start

serialNum Employee’s serialNum
empId Employee’s employee ID
properName Employee’s proper name (i.e. lastName, firstName)
startStamp Date/time the indirect activity is started
startTerminal The name of the terminal the employee used

activity

A dictionary of data about the activity being started
serialNum The serial number of the indirect activity being

started
indirect The code of the indirect activity being started
description The description of the indirect activity being

started

This maintainers of this document will try to keep the above data as up to date as
possible but the final reference should always be the source code.

An Example
To clear up any confusion let’s follow a real life example:

∙ An employee clocks in with the client.

∙ The client communicates with the server and executes the "employee clock in
routine".

∙ The server sends out a "clock_in" event which contains the employee’s serial
number, ID, name, the timestamp of when they clocked in, and the name of the
terminal they clocked in on.

3



∙ Any process that is subscribed to the "clock_in" channel receives the event and
decides what to do with it. For example: the sndcs_gtk client would update it’s
list of active employees, showing the clocked-in employee as idle. But a custom
plugin might compare the employee’s clock-in time with the time of their shift
start and if they are late it might pipe a strongly worded message through festival
(Project Page: http://www.cstr.ed.ac.uk/projects/festival) and pump it over the
shop floor loudspeakers. Thus strongly curtailing late arrivals ;)

Heartbeat
The ’sndcsd’ program sends out a Heatbeat event to the clients every 5 seconds. If a
client doesn’t receive four Heartbeat’s in a row it throws an exception and exits, this is
to prevent ’zombie’ terminals.

Creating Plugins

Web Plugins
Coming soon...

Server Plugins
Coming soon...

Client Plugins
Coming soon...

Hosted by SourceForge

4

http://www.cstr.ed.ac.uk/projects/festival
http://sourceforge.net/projects/sabernetdcs

